

The Lunar Reconnaissance Orbiter – Instrument Suite and Measurements

Jan. 14 2004 – The President announced a new vision for space exploration that included among its goals "... to return to the moon by 2020, as the launching point for missions beyond. Beginning no later than 2008, we will send a series of robotic missions to the lunar surface to research and prepare for future human exploration."

Vision implies extended periods in space

Unknown terrain, poor maps Radiation Environment Long Cold Nights and Warm Days Daytime 400 K (266 F) Nighttime 100 K (-280 F) Long Way From Home Exploitable Resources?

- Water
- Shelter
- Energy

LRO Objectives

- Safe Landing Sites
 - High resolution imagery
 - Global geodetic grid
 - Topography
 - Rock abundances

- Locate potential resources
 - Water at the lunar poles?
 - Continuous source of solar energy
 - Mineralogy
- New Technology
 - Advanced Radar

Space Environment

•

- Energetic particles
- Neutrons

LRO Follows in the Footsteps of the Apollo Robotic Precursors

- Apollo had three (Ranger, Lunar Orbiter and Surveyor) robotic exploration programs with 21 precursor missions from 1961-68
 - 1. Lunar Orbiters provided medium & high resolution imagery (1-2m resolution) which was acquired to support selection of Apollo and Surveyor landing sites.
 - 2. Surveyor Landers made environmental measurements including surface physical characteristics
 - 3. Ranger hard landers took the first close-up photos of the lunar surface
 - Exploration needs the above information to go to new sites and resource data to enable sustainable exploration.

Lunar Orbiter ETU in Smithsonian Air & Space Museum, Washington DC

	1962	1963	1964	1965	1966	1967	1968	1969	1970
TECHNOLOGICAL DATA Design input Design Modification Hardware Modification Launch Decision OPERATIONAL SUPPORT DATA Technique Verification Landing Site Survey Landing Aid SUPPORT PROGRAM PHASES						1 **			
Early Phase Direct Phase Post Apollo								\rightarrow	\rightarrow

NRC Decadal (2002) lists priorities for the MOON (all mission classes thru 2013) :

NRC Priority Investigation	NRC approach	LRO measurements	
Geodetic Topography (crustal evolution)	Altimetry from orbit (with precision orbits)	<i>Global geodetic topography at ~100m scales (< 1 m rms)</i>	
Local Geologic Studies In 3D (geol. Evolution)	Imaging, topography (at m scales)	Sub-meter scale imaging with derived local topography	
Polar Volatile Inventory	Spectroscopy and mapping from orbit	Neutron and IR spectroscopy in 3D context + UV (frosts)	
Geophysical Network (<i>interior evolution</i>)	<i>In situ</i> landed stations with seismometers	<i>Crustal structure to optimize siting and landing safety</i>	
Global Mineralogical Mapping (<i>crustal evolution</i>)	Orbital hyperspectral mapping	100m scale multispectral and 5km scale H mapping	
Targeted Studies to Calibrate Impact Flux (chronology)	Imaging and in situ geochronology	Sub-meter imaging of Apollo sites for flux validation and siting 6	

LRO Mission Overview

- Launch in late 2008 on a EELV into a direct insertion trajectory to the moon. Co-manifested with LCROSS spacecraft.
- On-board propulsion system used to capture at the moon, insert into and maintain 50 km mean altitude circular polar reconnaissance orbit.
- 1 year mission with extended mission options.
- Orbiter is a 3-axis stabilized, nadir pointed spacecraft designed to operate continuously during the primary mission.
- Investigation data products delivered to Planetary Data Systems (PDS) within 6 months of primary mission completion.

LRO Mission Overview

Launch: October 28, 2008

Lunar Orbit Insertion Sequence, 4-6 Days

Commissioning Phase, 30 x 216 km Altitude Quasi-Frozen Orbit, Up to 60 Days

Polar Mapping Phase, 50 km Altitude Circular Orbit, At least 1 Year

Nominal End of Mission: February 2010

LRO Spacecraft

LRO Emphasizes the Lunar Poles

7 day orbital ground track prediction

North Pole.

LRO Emphasizes the Lunar Poles

27 day orbital ground track prediction

North Pole.

Why the Poles and Where?

- Cold traps exist near the lunar poles (Watson et al., 1961)
 - Low obliquity of Moon affords permanent shadow in depressions at high latitude.
 - Temperatures are low enough to retain volatiles for $t > t_{Moon}$.

Lunar Ice: Current State of Knowledge

There are abundant permanently shadowed regions at both poles

North Pole

South Pole

Earth-Based RADAR topography maps of the lunar polar regions (150 meters spatial resolution 100 m vertical resolution) White areas are permanent shadows observable from Earth, Grey areas are an inferred subset of permanent shadows that are not observable from Earth.

Lunar Ice: Current State of Knowledge

Lunar Prospector Neutron Spectrometer maps show small enhancements in hydrogen abundance in both polar regions

NS results have ~ 100 km spatial resolution, and are most sensitive to hydrogen in the uppermost meter of soil

The weak neutron signal implies a the presence of small quantities of near-surface hydrogen mixed with soil, or the presence of abundant deep hydrogen at > 1 meter depths

Lunar Ice: Current State of Knowledge

The locations of polar hydrogen enhancements are associated with the locations of suspected cold traps

Instrument Suite

Instrument	Navigation/ Landing Site Safety	Locate Resources	Life in Space Environment	New Technology
CRATER Cosmic Ray Telescope for the Effects of Radiation			 High Energy Radiation Radiation effects on human tissue 	
DLRE Diviner Lunar Radiometer Experiment	Rock abundance	TemperatureMineralogy		
LAMP Lyman Alpha Mapping Project		Surface IceImage Dark Craters		
LEND Lunar Exploration Neutron Detector		 Subsurface Hydrogen Enhancement Localization of Hydrogen Enhancement 	Neutron Radiation Environment	
LOLA Lunar Orbiter Laser Altimeter	 Slopes Topography/Rock Abundance Geodesy 	 Simulation of Lighting Conditions Crater Topography Surface Ice Reflectivity 		
LROC Lunar Reconnaissance Orbiter Camera	Rock hazardsSmall craters	Polar Illumination MoviesMineralogy		
Mini-RF Technology Demonstration				S-band and X- band SAR demonstration

LRO Instrument Locations

Lunar Exploration Neutron Detector (LEND)

Igor Mitrofanov	PI	Russian Institute for Space Research
William Boynton	Col	University of Arizona
Larry Evans	Col	Computer Science Corporation
Alexandr Kozyrev	Col	Russian Institute for Space Research
Maxim Litvak	Col	Russian Institute for Space Research
Roald Sagdeev	Col	University of Maryland
Anton Sanin	Col	Russian Institute for Space Research
Vladislav Shevchenko	Col	Sternberg Astronomical Institute
Valery Shvetsov	Col	Joint Institute for Nuclear Research
Richard Starr	Cpl	Catholic University
Vlad Treťyakov	Col	Russian Institute for Space Research
Jakob Trombka	Col	NASA Goddard Space Flight center

LEND Science Overview and Theory of Operations

3 mm

1.00

Thickness of water ice layer, (cm)

100.00

10.00

0.10

0.2

0.0

0.01

LEND collimated sensors CSETN1-4 and SHEN detect epithermal neutrons and high energy neutrons with high angular resolution to test water ice deposit on the surface

Lyman-Alpha Mapping Project (LAMP)

Lyman-Alpha Mapping Project (LAMP) "Seeing in the Dark"

A Proven Instrument

Lunar Exploration: Polar Mapping and a Search for Water Frost

In response to: An Announcement of Opportunity: for Lunar Reconnaissance Orbiter (LRO) Investigations NASA AO NNH04ZSS003O

Principal Investigator: S. Alan Stern Southwest Research Institute

Atmospheric/

Exploration

Volatile

Alan Stern (SwRI), PI Ron Black (SwRI) Dana Crider (Catholic U.) Paul Feldman (JHU) Randy Gladstone (SwRI) Kurt Retherford (SwRI) John Scherrer (SwRI) Dave Slater (SwRI) John Stone (SwRI)

LAMP Instrument Overview

Lunar Reconnaissance Orbiter Camera (LROC)

Team

- Mark Robinson, Northwestern Univ., PI
- Eric Eliason, University of Arizona
- Harald Hiesinger, Brown
 University
- Brad Jolliff, Washington University
- Mike Malin, MSSS
- Alfred McEwen, University Arizona
- Mike Ravine, MSSS
- Peter Thomas, Cornell University
- Elizabeth Turtle, University Arizona

LROC Cameras

• WAC Design Parameters

- Optics (2 lenses) f/5.1 vis., f/8.7 UV
 - Effective FL 6 mm
 - FOV 90°
 - MTF (Nyquist) > 0.5
- Electronics 4 circuit boards
 - Detector Kodak KAI-1001
 - Pixel format 1024 x 1024
 - Noise 30 e-
- NAC Design Parameters
 - Optics f/4.5 Maksutov
 - Effective FL 700 mm
 - FOV 2.86° (5.67° for both)
 - MTF (Nyquist) > 0.15
 - Electronics
 - Detector Kodak KLI-5001G
 - Pixel format 1 x 5,000
 - Noise 100 e-
 - A/D Converter AD9842A
 - FPGA Actel RT54SX32-S

WAC Polar Observations

- Determine lighting conditions at both poles through a full lunar year
- 85° latitude in the dark to the pole, onward down to 80° latitude in the light (every orbit, monochrome, full swath width, both poles)
- Every 113 minute time step movie of poles over a full year (occasionally miss an orbit). Requirement of every 5 hours.
- Complete overlap from 88° pole every observation. Time step increases at "low" latitudes (down to 80°).

Illumination map of lunar south pole during 2 months of southern winter Clementine ~10 hr steps, 5° change in Sun azimuth (Bussey et al 1999).

LROC Science/ Measurement Summary

- Landing site identification and certification, with unambiguous identification of meter-scale hazards.
- Meter-scale mapping of polar regions with continuous illumination.
- Unambiguous mapping of permanent shadows and sunlit regions including illumination movies of the poles.
- Overlapping observations to enable derivation of meter-scale topography.
- Global multispectral imaging to map ilmenite and other minerals.
- Global morphology base map.

LROC NAC camera will provide 25 x greater resolution than currently available

Lunar Orbiter Laser Altimeter (LOLA)

- <u>David E. Smith</u> (GSFC) -- Principal Investigator; global geodetic coordinate system
- <u>Maria T. Zuber</u> (MIT) -- Deputy Principal Investigator; global topography & coordination of data products with NASA Exploration objectives
- Oded Aharonson (Caltech) -- Co-I; surface roughness
- <u>James W. Head</u> (Brown U.) -- Co-I; landing site assessment; E&PO representative
- Frank G. Lemoine (NASA/GSFC) -- Co-I; orbit determination & gravity modeling
- <u>Gregory A. Neumann</u> (MIT, NASA/GSFC) -- Co-I; altimetry analysis & archiving
- <u>Mark Robinson</u> (Northwestern U.) -- Co-I; polar regions & surface brightness analysis
- <u>Xiaoli Sun</u> (NASA/GSFC) -- Co-I & Instrument Scientist; instrument performance

Instrument Overview

- LOLA measures:
 - <u>RANGE</u> to the lunar surface (pulse time-of-flight)
 ±10cm (flat surface)
 - <u>REFLECTANCE</u> of the lunar surface (Rx Energy/Tx Energy) ± 5%
 - SURFACE ROUGHNES (spreading of laser pulse)
 ± 30 cm
- Laser pulse rate 28 Hz, 5 spots => ~ 4 billion shots on the moon in 1 year.

LOLA Observation Pattern

 LOLA is a 70-meter wide swath altimeter (includes field of view of detectors) providing 5 profiles at 10 to 15 meter spacing and ~15 meters along-track sampling

 LOLA characterizes the swath in elevation, slope and surface roughness, and brightness

• Knowledge of pixel locations determines map resolution.

Diviner Team

UCLA

Principal Investigator: David Paige Co-Investigators:

> Carlton Allen Simon Calcutt Eric DeJong JPL Bruce Jakosky Daniel McCleese Bruce Murray Tim Schofield Kelly Snook JSC Larry Soderblom Fred Taylor Oxfo Ashwin Vasavada

JSC Oxford (UK) JPL U. Colorado JPL Caltech JPL JSC USGS Oxford (UK) JPL

Project Manager: Wayne Hartford

JPL

Diviner Overview

- Close copy of JPL's Mars Climate Sounder (MCS) Instrument on MRO 9channel infrared radiometer 40K – 400K temperature range
- 21 pixel continuous pushbroom mapping with ~300 m spatial resolution and 3.15 km swath width at 50 km altitude
- Azimuth and elevation pointing for off-nadir observations and calibration

Diviner Investigation Goals

1. Characterize the moon's surface thermal environment

- Daytime
- Nighttime
- Polar
- 2. Map surface properties
 - Bulk thermal properties (from surface temperature variations)
 - Rock abundance and roughness (from fractional coverage of warm and cold material)
 - Silicate mineralogy (8 micron thermal emission feature)
- 3. Characterize polar cold traps
 - Map cold-trap locations
 - Determine cold-trap depths
 - Assess lunar water ice resources

Clementine LWIR Daytime Thermal Image (200m /pixel)

Lunar day, night and polar temperatures

Cosmic Ray Telescope for the Effects of Radiation (CRaTER)

Name
Harlan E. Spence
Larry Kepko
Justin Kasper
Bernie Blake
Joe Mazur
Larry Townsend
Michael Golightly
Terry Onsager
Rick Foster
Bob Goeke
Brian Klatt
Chris Sweeney

Institution	Role
BU	PI
"	Co-I (E/PO, Cal, IODA lead)
MIT	Co-I (Project Sci.)
Aerospace	Co-I (Detector lead)
"	Co-I (GCR/SCR lead)
UT Knoxville	Co-I (Measurement lead)
AFRL	Collaborator
NOAA/SEC	Collaborator
MIT	Project Manager
"	Systems Engineer
"	Q&A
BU	Instrument Test Lead

Instrument Overview

Crater Instrument Configuration

Mini RF Instrument Team

Name	Institution	Role
Chris Lichtenberg	Naval Air Warfare Center	Principal Investigator
Paul Spudis	Johns Hopkins University APL	Co-Investigator
Keith Raney	Johns Hopkins University APL	Co-Investigator
Benjamin Bussey	Johns Hopkins University APL	Co-Investigator
Brian Butler	National Radio Astronomy Observatory	Co-Investigator
Mark Robinson	Northwestern University	Co-Investigator
John Curlander	Vexcel	Member
Mark Davis	USAF/Rome Laboratory	Member
Erik Malaret	Applied Coherent Technology	Member
Michael Mishchenko	NASA Goddard Institute for Space Studies	Member
Tommy Thompson	NASA/JPL	Member
Eugene Ustinov	NASA/JPL	Member

Possible Mini-RF Lunar Demonstrations

SAR Imaging (Monostatic and Bistatic)

Monostatic imaging in Sband to locate and resolve ice deposits on the Moon.

Communications Demonstrations Component Qualification

Monostatic imaging in S-band and X-band to validate ice deposits discoveries on the Moon

X-Band Comm Demo

Coordinated, bistatic imaging in S-band, to be compatible with the Chandrayaan-1 and LRO spacecraft, can unambiguously resolve ice deposits on the Moon Other Coordinated Tech Demos: e.g ranging, rendezvous, gravity